45

PROCESSES AND THE DENOTATIONAL
SEMANTICS OF CONCURRENCY

J.W. de Bakker & J.I. Zucker
Mathematisch Centrum, Amsterdam/SUNY ar Buffalo, USA

1. INTRODUCTION

The aim of this paper is to present a mathematical study of the se-
mantics of a variety of language concepts in the area of concurrency. We
shall be concerned with three fundamental notions in this field: parallel
composition, synchronization, and communication, and we shall develop a
general framework in which definitions and properties of these notions can
be discussed in a systematic way.

The emphasis in the paper is on definitions - rather than on pragmatic
use — of language concepts. We shall use the methodology of denotational
semantics. "Denotational’ should be contrasted here with "operétional":
The key idea of the former approach is that expressions in a programming
language denote values in mathematical domains equipped with an appropriate
structure, whereas in the latter the operations as prescribed by the lan-
guage constructs are modelled by steps performed by some suitable abstract
machine,

In the denotational semantics of sequential programming concepts, a
central role is played by the notion of (state-~transforming) function. Let
us use I, with elements o, for the set of states. For the present purposes,
it suffices to define a state as a mapping from program variables x,y,...
to values such as 0,1,... . The denotational meaning of a simple command
such as the assignment statement x := x+1 is a function ¢: I =+ I, defined
by ¢ (o) = o', where o' (x) = o(x)+1, and ¢'(y) = o(y) for all y # x. Also,
the meaning of a composite command, formed by sequential composition '";",
such as x := x+1; y := x+y is obtained by forming the function composition
¢2°¢l, where ¢l and ¢2 are the meanings of the statements x := x+! and

y := x+y, respectively. When we admit nondeterminacy, the situation changes

46

somewhat in that the meaning of a statement is now a function from states
to sets of states with a certain structure. Using P for "power set of", we
now use functions ¢: I =+ P(L). Here as well, composition is easy to define:
¢°0, = ro.{o'|o" € 4)1(0") for some o" € ¢2(c)}, and no essential extension
of the traditional view of a statement having a state transformation as its
meaning is necessary. A fundamental change in this view is needed, however,
for the denotational treatment of parallel composition. Let Sl {l 82 denote
parallel execution of S1 and SZ: Statements Sl and S2 - in the example al-
lowed to share their variables — are executed by arbitrary interleaving of
the constituent elementary actions of S1 and 52. Consider, for example, a
simple program (x): (AI;AZ) Il (BI;BZ), with A,,B, elementary actions (such
as x := x+l), and let ¢i,¢i be the respective meanings of Ai’Bi' Now what
happens if we take the ¢i,wi simply as functions: L - I? We form the com-
positions ¢ = ¢2°¢1, L DALY and try to define a resulting function merge
(¢,¥) . Here we are stuck, since having formed the compesitions ¢,¥, we no
longer have available their respective operands ¢i,¢i. (Remember that what
we want as resulting function is the union of the (six) possibilities

LEN PR PR ¢2°¢2°¢1°¢1,...,\."204)1°¢2°¢1.) In an operational approach, the
problem does not arise in this form: A trace is kept of the computation,
e.g. in the form of the (set of the) sequence(s) of elementary actions
generated while executing the program, and the meaning of 5, Il SZ is simply
the shuffle (in the language theoretic sense) of the traces corresponding
to S! and S,. (Other operational approaches are also possible, see e.g.
[31,49 1. However, they all involve suitably structured sequences of elemen-
tary steps.) This preserving of intermediate information in order to be able
to describe the final result of interleaving is crucial for a proper treat-
ment of parallellism, and is in fact what we shall do as well in our deno-—
tational approach. The basic idea is to extend the notion of function to
that of process. Here "process" is a generic term, referring to a variety
of mathematical objects which have one important property in common, viz.
that they are constituted in some way from (possibly infinite) sets of
(possibly infinite) sequences. For the example language comsidered above,
the corresponding notion of process is an extension of that of state—trans—
forming function in that it is still a function but now includes the infor-—
mation on how it was built up from the - possibly infinite - sequences of
its elementary components. In this introduction we shall not be more pre-—
cise about the notion of process. What we do underline is that in our

theory a process is a semantic rather than a syntactic notion: it is a

47

feature of the mathematical model rather than of the program text

Section 2 of the paper presents the notion of process in some detail.
A rigorous treatment of this requires some mathematical machinery involving
tools from metric topology. A fundamental role is played by equations for
domains of processes. Such equations are solved essentially by completion
techniques - reminiscent of the way Cantor comstructed the real numbers
from the rationals. Next, the central operations upon processes are defined.
We consider the convenience in formulating these definitions as an important
accomplishment of the theory of processes. Processes are finite or infinite.
Defining the operations for the finite cases requires specific attention;
the infinite ones are each time obtained in a standard way by continuity
arguments. Some of the more tedious mathematical arguments are relegated
to the appendices; in section 2 we concentrate on those results which are
necessary for an understanding of the central sections of our paper. For
the reader who wants to skip all mathematical details we provide a brief
summary of the relevant results at the end of the section. Sections 3 to 8
constitute the applied part of the paper. In these, it is shown how a rigo-
rous and concise semantics can be designed for certain central notions in
concurrency, by an appropriate synthesis of the use of processes with that
of more traditional ideas of denotational semantics. Section 3 concentrates
on flow of control: It considers a simple language with elementary actions,
sequential composition and nondeterministic choice, and iteration or recur-
sicn. Adding parallel composition ("“ ") to this requires for its semantics
a rather simple process domain, the so-called uniform processes. Iteration
and recursion are dealt with in a relatively straightforward way by certain
limit constructions. We already mention that an appeal to Banach's fixed
point theorem will replace the familiar least fixed point approach of de-
notational semantics based on complete partially ordered sets. The section
also discusses how the yZeld of a uniform process p can be derived from the
set of all paths in p.

In section 4 we add synchronization to the language(s) of section 3.
Synchronization restricts the set of all possible interleavings of se-
quences of elementary actions, and a general mechanism to model this is
studied. Section 5 refines the theory by introducing the notion of state -
suppressed in sections 3 and 4 - and assignments, and discusses the required
extensions to the notions of processes and their yields. Processes are no
longer uniform, but depend on the state as an argument, and the previous

definitions have to be modified accordingly. As special feature we mention

48

that unbounded nondeterminacy can be dealt with without any additional
measures. Section 6 combines the ideas of sectioms 4 and 5, in that synchro-
nization is now considered for non-uniform processes. Among the topics
studied are deadlock, and synchronization through guards in guarded commands.
Section 7 extends synchronization to comminication: At points of synchro-
nization in the parallel execution values are passed from one process to
another. A further extension of the notion of process is needed to deal with
this. Two major examples of languages with communication are treated:
Hoare's Communicating Sequential Processes ([341), and Milner's Calculus for
Communicating Systems ([44]). In section 8 we finally discuss some miscel-
laneous notioms in concurrency, without providing a full treatment as was
done in the preceding sections. In the appendices a number of mathematical
details omitted in section 2 are filled in.

A few words on the emphasis on denotational in the title of our paper
are in order. Our arguments for the claim that our approach is denotational
are twofold: (i) the systematic use of mathematical models which are used
as range for the valuation mappings assigning meaning to the various
programming constructs, (ii) the systematic way of adhering to the composi-
tionality principle, allowing homomorphic valuations. However, we are aware
of the fact that we have to pay a price for this. The mathematical model
contains various notions which, though denotational in style, are operational
in spirit. These include the "history" feature of the notion of process
itself, and the use of socalled silent moves in dealing with synchronization
and recursion.

There is a vast amount of literature on concurrency, and a good part
of these papers involve some discussion of the operational semantics of the
notion(s) in concurrency. Our understanding of concurrency has been profound-
ly influenced by the work of R. Milner, starting with [42], continued in
papers such as [30,40,43), and culminating in [44]. Though the latter work
is primarily operational in spirit, there is still a lot in it which recalls
its author's denotational period. Also, for an intuitive understanding of
the central notions in cdncurrency it is an invaluable source. The various
notions of process to be studied below will be introduced as solutions of
domain equations. The introduction of equations of this type is due to
D.Scott - dating back to perhaps the most famous equation for reflexive
domains: D = D + D - and has been treated extensively in, e.g., [54] or,
more recently, in [55]. A very nice textbook on denotational semantics in

general and domain equations in particular is Stoy [57]. (A more introduc—

49

tory text on denotational semantics is Gordon [28]; many advanced topics

are treated in Milne & Strachey [41].) Scott's theory did not include non-
determinacy or concurrency, and an extension of his theory dealing with
these concepts was proposed by Plotkin ([48]), later simplified somewhat by
Smyth ([56]; c.f. also [39]). The first time we saw a domain equation inten—
ded to be used for modelling concurrency was in Bekic [12]. In the work of
Plotkin and Smyth, domain equations are solved by category-theoretic methods
which may be somewhat demanding for the uninitiated reader. We prefer to use
other tools, viz. those of metric topology. The use of these has been advo-
cated in recent years by M. Nivat and his colleagues, and applied succes-
fully in a variety of applications having to do with infinite words or
infinite trees modelling infinite computations and the semantics of recursive
program schemes with nondeterminacy [5,6,45,46]. The mathematical foundations
of our work - as described in section 2 - owes a considerable debt to the
work of Nivat's school - though the specific way we use topological comple-
tion techniques to solve equations seems to be new.

Our own first venture into the realm of (infinite) processes was
De Bakker [9]. Lacking in that paper was a sound mathematical basis for the
notion of process. The present topological treatment was first described in
De Bakker & Zucker [11], reporting on research which was started during a
most enjoyable stay of the first author at Bar-Ilan University and the
Weizmann Institute during the summer of 1981.

Further references to the literature - in particular concerned with the
various concepts in concurrency we shall encounter in these notes - will be
given as we go along.

A preliminary version of this paper was used as lecture notes for the
Fourth Advanced Course on Foundations of Computer Science, Amsterdam, June
1982. We are indebted to the students of this course for various questions
and comments, We also acknowledge the suggestions of the referee, and
discussions with J.A, Bergstra, J.W. Klop, R. Kuiper, L. Lamport,
J.J.Ch.Meyer, and G. Plotkin.

2. PROCESSES

In this section we show how processes p can be introduced as elements
of domains P which are obtained as solutions of domain equations of the
form (*): P = T(P). The techniques used to solve (*) are taken from metric

topology. A variety of equations (*) is considered, determining a variety

50

of process domains of increasing complexity. Furthermore, a number of opera-
tions upon processes are defined, viz. composition (pl°p2), union (p]upz),
and merge (p1“ p2), and various properties of these operations are presented.
A few of the proofs of the supporting mathematical facts are not contained

in this section but can be found in the appendix. A brief summary of the
relevant results is given at the end of the section.

We begin by recalling a few basic facts from metric topology. We assume
known the notions of metric space, Cauchy sequence (CS) in a metric space,
isometry (distance-preserving bijection), limits and closed sets, completeness
of a metric space, and the theorem stating that each metric space (M,d) canbe
completed to (i.e., isometrically embedded in) a complete metric space. Throughout
our paper, we shall only consider spaces (M,d) such that the metric d has
values in the interval [0,1].

These notions are sufficient to solve the first domain equation for
processes. This equation is very simple, and introduced only for the sake
of illustrating the method used in solving such equations. Let A be any set.

We consider the equation
(2.1) P = {py} U (A%P)

where Py is the nil process, and "x" is the usual cartesian product. In-

tuitively, it is not difficult to see that the (greatest) solution set P
should consist of Py» all finite sequences of the form <a1,<a2,...,<an,p0?
...>>, for n 2 1, together with all infinite sequences <@p,<ay; 003> The
role of the nil process Py may be somewhat unusual in this equation, in that
it replaces the more familiar empty sequence. However, it will remain with
us all through the paper, and we ask the reader to exercise some patience

in trying to appreciate its use.

We now obtain the solution of (2.1) in a more rigorous manner:

DEFINITION 2.1. Let (Pn,dn), n=0,1,..., be a collection of metric spaces
defined inductively by: PO = {po}, do(p',p") = 0 (since

A " P Py v = "w = -
P'sP "s 0 P p' Pgs Ppyy = {pgt v (A<, 4
G (PToP") = 0 if p' = p" =py, d L (p',P") = 1 if p' = py, p" # Py o P’ #Ppy»
p" = Py- Otherwise, p' = <al’pl>’ " = <a2,p2> for some a],az € A, PsPy €
Pn’ and we put

is given by:

51

1, if a # a,

v " = =
ey (152" = 4y (capopy>,<a,005%)

[
o

| .
7 4,(ppopy)s if 2

It is not difficult to verify that dn is indeed a metric on Pn' As

. df df.
next step, we define Pw = Un P,and d = Un dn' E.g., take

p' = <al’<a2’<a3’p0>>>’ ?H = <a]’<a2’<a3’<34’?0>>>>' Then d(p',p")
clim(p',p“) (any m 2 4)]= 7 dpo1(f8p5%24,p>>,<a,,<a,,<3, ,p(>>>) = ... =
g dn-3(Po><3oP07) =g *1 =

[}

—

.

|

DEFINITION 2.2.
a. P =U P, d=U d
b. (P,d) is the completion of (Pw,d).

Standard properties of the completion technique yield that we may take
P as consisting of Pw together with all limit points p = limn P» with
<pn>n a Cauchy sequence such that P € Pn' It is now straightforward to

show that
LEMMA 2.3. P satisfies (2.1).
Proof. Let P'qg’

in the following manner. First we consider ¢. If p = Pys we take ¢(p) = Py

{po} u (AXP). We define isometries ¢: P -~ P', y: P' » P

clearly, ¢(p) € P' in that case. Otherwise, p = limn P, with P, 2 Ccs (if
P € Pn’ for some n 2 1, p is identified with a CS which is eventually comn—
stant), and we may assume without lack of generality that P, = <a,qn>, for
some a and all n, such that Q> is also a CS. Now let q = 1imn 9 we take
¢(p) = <a,q>. We leave the definition of ¢, and verification that ¢,y are

indeed isometries to the reader. [J

The trouble taken to solve (2.1) may seen somewhat inordinate. It was
done this way to familiarize the reader with this style of argument - which
will pay off later - rather than for the solution of this problem in its
own right.

Processes p which are elements of sets P as defined (e.g.) by equation

(2.1) have a degree, written as deg(p), and defined in

DEFINITION 2.4. deg(p,) = 0, deg(p) = n if p e P \P

deg(p) = =, otherwise.

n-1° for some n 2 1, and

52

For processes p,q in P as defined in (2.1) we now give the definition

of their composition peq:

DEFINITION 2.5. peq is defined (by induction on deg(q))
a. popo = p, pe<a,q'> = <a,peq'> if deg(<a,q'>) < =

b. p011mi 4 = llmi(pﬂqi), for a9 finite

Example: <a,<a,,py>> ° <ag,pp> = <a3,<al,<a2,p0>>>. We see that composition

is (almost) concatenation in reverse order.

LEMMA 2.6.

a. If <q;>; s a CS then so are <peq>; (this justifies definition 2.5b)
and <q;°p>; - .

b. "o" is continuous in both arguments, t.e., (1:i.mi pi)°q = llmi (pi°q),
and pollmi 4 = 11mi (poqi), for all P;-4; such that <p;>;»<q;>; are CS.

c. "o" is associative

Proof. This lemma being a special case of later results, we omit its

proof. [

We now turn to the solution of a more interesting equation. The re-
sulting processes are not simply (finite or infinite) sequences, but -
roughly, a precise statement follows - sets of such sequences. We want to

solve
(2.2) P = {po} U PC(AXP)

where P(-) denotes all subsets of (+), and Pc(-) all closed subsets of (-)
(closed with respect to the metric to be introduced in a moment). Before
going into the mathematical details, we consider a few simple examples.
Possible elements of P are Py» {<a1,p0>,<az,p0>},{<al,{<a2,p0>}>,<al,
{<a3,p0>}>},{<a],{<a2,p0> <a3,p0>}>}, or {<a,{<a,{<a,...>}>}>}. In pictures,
these processes may be represented by

©

Py

53

We see that these processes closely resemble (unordered) trees. How-
ever, as essential difference we have that "nodes" in a process have a set
—rather than a multiset -~ of successors: A tree j{l\? has no corresponding
process.

The topological treatment of the solution of (2.2) requires some pre-

parations. Firstly, we extend distances d as follows:

DEFINITION 2.7. Let (M,d) be a metric space and let X,Y be subsets of M.
We define

a. d(x,¥) = inf d(x,y)
yeY
b. d(X,Y) = max(sup d(x,Y), sup d(y,X))

xeX yeY

(By convention, inf ¢ =1, sup ¢ = 0.)

Remark. The distance d(X,Y) is the Hausdorff distance between sets. It

should be distinguished from d'(X,Y) = inf d(x,y), which does not

xeX,yeY
determine a metric.

For the Hausdorff distance we have

LEMMA 2.8. Let (M,d) be a metric space, and let Pc(M> be the collection of
all closed subsets of M. Then (PC(M),d) 18 a metric space.

Proof. See [19] or [22]. O

Remark. Given a metric space (M,d), d is said to be an ultrametric on M if
it satisfies the "strong triangle inequality" Vx,y,z € M[d(x,2z) < max

(d(x,y),d(y,2z))]. It is easy to see that if d is an ultrametric on M, then
so is the induced Hausdorff metric on Pc(M)' It will follow (as can easily
be shown) that every process domain P c&nsidered in this article will have

an ultrametric with, moreover, max {d(p,q)lp,q e P} = 1.

An important technical result which plays a central role in the theory

developed below is the following theorem of Hahn [29](cf.also [221):

Q

THEOREM 2.9. If (M,d) <s complete then so is (PC(M),d). Also, for <X >
CS in PC(M), we have that

{ = = 11 <x > in M}.
lim Xn x| x l;m X, X € Xn’ x> a (o }
n

54

Proof. See Appendix A.

We now proceed with the conmstruction solving (2.2). We introduce
metric spaces (Pn’dn)’ extending the techniques as applied before with sets

and their (Hausdorff) distances:

DEFINITION 2.10. The collection of metric spaces (Pn’dn)’ n=20,1,..., is

defined by By = {p,}, dj(»',p") =0, B, = {py} u P(axP), d ., (p",p") is

as before for p' = Py of p" = Py- Otherwise, p' = X ¢ A X P> p" = Y_C_AXPn,
and we take dn+|(X’Y) as the Hausdorff distance induced by the distance be-
tween points dnﬂ(x,y), where (as before), for x = <a;5P >, ¥ = <2,,P,>
1, if a, # a
1 2
x,y) = .

dn+l }d(), if = a
n'P12Pg/s 11 3 2

Example. Take a, # a?. Then dz({<al,{<a2,p0>,<a3,p0>}>},{<al,{<32,P0>}>,
<al,{<a3,p0>}>}) =3 -
As before, we take P = U P ,d=U_ d, and (P,d) is defined as the
w n n n n

completion of (Pm’d) . We have

THEOREM 2.11, P = {po} U PC(AXP), where Pc(-) stands for all subsets of
(*) which are closed with respect to the metric d.

The proof needs a definition and a lemma.

DEFINITION 2.12.

a. Let p ¢ Pm' We define p(n), n=0,1,..., by: If p = 1 then p(n) = Py>
n =0,1,... . Otherwise, p(o) = Pp» p(nH) = {<a,q(n)> [<a,q> € p}.
b. Let p € P\Pw. Then p = 11'.m:.L Pis P € Pi’ <p;>; a CS. We then put
@ ;Y@
P = lim; p; .

c. For X ¢ A x P we put X(nH) (n

= {<a,p)> ! <a,p> € X}, n =0,1,...

LEMMA 2.13.

a. For each p, p = 11'.111n P

(n)

b. For X ¢ A x P, <X(n)>n i8 a CS and limn X(n) = X, where X is the closure
of X. Hence, for X closed, X = limn X(n)

Proof. We only prove part b. Clearly, for m < n, d(X(n),X(m)) < 1/2m, and
(n)

we see that <X' “> is a CS. We now show that X ¢ lim X(n) . Let <a,p> € X.

(n) (n)

Then <a,p> = <a,limn p > = 11'.111n <a,p’ "> ¢ 11'.mn x(®) . Each X(n) is closed

55

in Pn+l (all subsets of each Pn are closed, since distances between points

are at least 1/2" and so there are no non-trivial CS in Pn); hence, 1imn X(n)

exists and is closed. From this and X ¢ 1imn X(n) it follows that X c 1imn

X(n) (n)

. Conversely, let p ¢ limn X

(n) - o = 13
P, € X > <p > 2 CS. Hence, P, = 4 for some q, € X. Then p = 11mn 9>

i.e., p belongs to the closure X of X.

. By theorem 2.9, p = limn P> where

We now prove theorem 2.11. Similarly to what we did in the proof of
lemma 2.3, we show that P satisfies (2.2) by establishing an isometry
between the spaces P and P'QS' {po} U PC(AXP). We define two bijections
¢: P~ P', y: P' > P, as follows:

(1) 1f p = Py» then ¢ (p) = Py- Otherwise, p = limn P> P € Pn’ P>, @
Cs, P, # Py for n sufficiently large. For these n, by the definitiom
of Pn we have that Py is a subset of A x Pn_],hence closed in A x P
thus, P’ is a CS of closed sets in A x P. We now take for ¢(p) the
closed subset of A x P which equals 1imn P-

(i1) 1If p' = P, then y(p') = Py- Otherwise, take p' = X ¢ PC(AXP). By Lemma
2.13b, X = limn X(n . For each n > 0, put Pn = X(n)e Pn' Since
<X(n)>n is a CS in P', “Pp’n is a CS in P. So we define y(p') = limnpn.

We leave it to the reader to verify that ¢,y are the required isometric

mappings. This concludes the proof of theorem 2.11. [

We proceed with the introduction of the operations "o", "u", "|I' for
processes p in P solving (2.2). By the preceding theory we know that for
each process p, either p is Pys OT P is finite and p = X ¢ PC(AXP), or p is

(1) e P.

infinite and p = limi p(l), <p(l)>i a CS, with p i i=0,1,...

DEFINITION 2.14. Let X,Y ¢ P_(AxP) with deg(X), deg(Y) < =.

a. (composition) P°P, = P» poX = {pex | x ¢ X}, pe<a,q> = <a,peq>, and
po limi q(l) = limi (peq .).
b. (union) p, U p=p U pPp, =P, XU Y is the set-theoretic union of the
0 0 () G s ® (K
two sets X,Y. Also, (11mip Y u (11mi q)= llmk (p uq).
o Georg) pllzg = pollp = v X = iyl y e W V¥ x W,
X” <a,p> = <a,X|| p>,<a,p>“ X = <a,p|| X>, and (limi P *)ll(limj q Py =

lim_ ™ «®).

56

Bzample. p, || p, ¥ < ,{<a,y,p> P>} || {<ay, {<a,,py> 1>} =
{<a1,{<a2,p0>}|! p,>} U {<a3,p1|| {<a,,pp>1>} =
{<al,{<a2,p2>} u {<a3,{<a2,p0>}” {<a4’P0>}>}>’

<a3,{<a4,p >} u {<ﬁ’{<az’p0>}” {<34,p0>}>}>} =,
{<a {<a2,{<33,{<a4,p0>}>}>
<ay,{<ay, {<a,,pp> P> <a4,{<az,P0>}>}>}>
<33,...>}.
(The reader should compare this with the (language-theoretic) shuffle of
two words aa, and ay3,, yielding a set of six words {a]a2a3a4,a 333,53,
...,a3a4ala2}.)

The foilowing picture describes the result:

Definition 2.14 is justified in

LEMMA 2.15.
a. For finite q,q',d(peq,peq') < d(q,q")
b. For finite Qs if <q > s a CS then so 18 <pe°q 2o
(Hence, the defzmtwn peq = 11m (p°q<)) is well-formed)
e. Part a holds for all q,q'
d. If q *d then p°q, > P°q (o™ is continuous in its second argument)
e. For finite p,q,p',q', d(pup',quq') < max(d(p,q),d(p',q"))
f. For finite L if <P <47, @re CS, then so is <P Uq,>
(Hence, the definition puq = 11m (p(n> (n))zs weZZ—fbrmed)
g. Part f holds for all p,p',q,q"
h. If P, > P4, >4 then P,Udq, TP Ud ("u" Zs continuous in both argu-
ments)
i. For finite p,q,q',p", d(p|l @,p'|l 4") < max(d(p,p"),d(q,q"))
i-£. Similarly to £-h for ||
m. "o" is continuous in its first argument

n. "o, "y","|| " are associative, "u" and "|| " are commutative.

57

Proof. See Appendix B. [J

We continue with the consideration of domain equations which determine

more complex processes. Calling processes in (2.2) uniform, we consider the

non-uniform processes defined in
(2.3) P = {po} u (A~ PC(BXP))

Processes p are now (either Py or) fumetions, such that for each a, p(a) is
a closed set {...,<bi,pi>,...}i€I, where the index set I depends on
a: I = I(a). The solution of (2.3) is very similar to the ones given above.

A nev element is the distance between functions. We give

DEFINITION 2.16. The collection of spaces (Pn’dn)’ n=0,1,..., is defined

nl = {po} u (A~ P(BXPn)),
(p',p") is as before for p' = P or p" =p

as follows: P0 and d0 are as before. P

dn+l
sup

0" Otherwise, dn+1(p',p") =
ach dn+1(p'(a),p"(a)), where the distance between the sets p'(a),p"(a)
is the usual Hausdorff distance induced by the distance between points

dn+1(<b],p1>,<b2,p2>) given by

1, if b] # b,
dn+1(<b1spl>,<b2,P2>) =
i d (pspy), if by =b,.

As before, dn determines a metric on Pn’ Pw is defined as Un Pn’

d = Un dn’ and (P,d) is the completion of (Pw’d)' We have
THEOREM 2.17. P = {po} u (A~ PC(BXP)).

Proof. By appropriately adapting the proof of theorem 2.11. For example, we
treat the isometry ¢: P + P', where P'qg' {po} u (A~ PC(BXP)). Let

p = limn P> <p > 2 CS in P. We indicate how to obtain ¢(p) as a function
in (A > PC(BXP)). Take any a € A. Since P’ is a CS, so is <pn(a)>n. As
CS of closed sets, <pn(a)>n has as limit a closed set, say Xa’ where

X < B x P. Now put ¢(p) = Aa.Xa. We have to check (i)¢ is well defined,
a =

i.e., if (p=) 11mn 12

i.e., ¢(p) = ¢(q) = p
We treat only (ii). Assume that, for all a, limn pn(a) = limn qn(a). To

1imn q.s then 1imn pn(a) = 1imn qn(a), (ii) ¢ is 1-1,

q, (iii) ¢ is onto, and (iv) ¢ preserves distances.

58

show p = q, i.e., 1imn P, = limn q- Since .<pn>n, <qn>n are CS, we have
VedNVm,n = N [d(pm,pn) < ef2, d(qm,qn) < e/2]. Thus, (*) Vm,n = N

vald(p (a),p (a)) < €/2], (**) Vm,n 2 N Va[d(q_m(a),qn(a)) < €/2]. Letting
m > ® in (%), (**) we have pm(a) + p(a), qm(a) -+ q(a) . Thus

vn 2 N Va[d(pn(a),p(a)) < ef2, d(qn(a), q(a)) < €/2]. From this, since
p(a) = q(a), we obtain Vn 2 N [d(pn(a),qn(a)) < €]. Taking sup over all a
we get Vn 2 N [d(pn,qn) < ¢]. By a standard argument then d(p,q) < €. Since

this holds for any € we conclude that p = q. [
The operations "o","u","|| " can be extended to non-uniform processes.

DEFINITION 2.18. We only consider processes of finite nonzero degree, the

treatment of the remaining cases being the usual one.

a. (composition) pera.X = Aa.(peX), where peX = {pex | x € X}, and
pe<b,q> = <b,peq>

b. (union) (Aa.X) u (Aa.Y) = ia.(XuY)

c. (merge) (Aa.X)| (Aa.Y) = ra.({x]| (Aa.Y) | x e X} u{Ca.X) ||y | y e YD
where <b,p>| (Aa.Y) = <b,p” Aa.Y>, and (Aa.X)|| <b,q> = <b, (Aa.X)|| ¢>

Remark. Observe the difference between clauses b and ¢, in that we do not
put (Aa.X) || (Aa.Y) = ra.(X|| ¥) (with X|| Y defined appropriately).

In other words, though we have, for p,q # Py> that p u g = Aa.(p(a)uq(a)),
for p|| q we do not have p|l ¢ = Aa.(p(a)|| q(a)) but, instead, pl| q =

ra. (@]la) v el at@)).

Operations "o","u" and "|| " for non-uniform processes satisfy the

natural extension of Lemma 2.15:

LEMMA 2.19. As Lemma 2.15, but now for the operations as given in defini-

tion 2.18.
Proof. Left to the reader.
The last equation in the list of domain equations is
(2.4) P ={py} u (A>P ((BxR) U (C~>P))).
We only give the definition of the metric spaces (Pn’dn)’ leaving elabora-

tion of the details concerning the isometries necessary to establish (2.4)

to the reader. We have

59

DEFINITION 2.20. The metric spaces (Pn’dn)’ n =0,1,..., are defined by:

- 1 "
Py»d, are as before, P ., {po} u (A »> P((BXPH) U (C»Pn))), dn+1(p ,p™
is as before for p' = py or p" = p,. Otherwise, d_ (p',p") =

sup (p'(a),p"(a)), where dn+1(X,Y) is the Hausdorff distance between

achA dn+l
sets induced by the distance between points dn+1(x,y), where dn+1(<b,p>,

re.p') =1 =4d (Ae.p',<b,p>), dn+1(<b],pl>,<b2,p2>) is as usual, and

n+l
dn+l(Ac.pl,Ac.p2) = sup__. dn(pl,pz).

The operations for p € P, with P solving (2.4) are given in

DEFINITION 2.21. We only consider processes of finite nonzero degree.

a. pera.X = 2a.(p°X), peX = {pox|xeX}, po<b,q> = <b,poq>, poic.p' =
Ae.(pep’)

b. u: Omitted.

c. (Aa.X) | (ra.v) = ra.(Ix]] (ra.y) | xeX}u{(Aa.X) || y| yeY}), where <b,p>|| Aa.Y
= <b,p|| 2a.Y> and similarly for (Aa.X) || <b,p>, Oic.p" || (a.y) =
Ac.(p']|ka.Y), and similarly for (Aa.X)||(Ac.p').

As the last lemma of this section we claim
LEMMA 2.22. The operations "o","u","|| " have the usual properties.

Proof. Omitted. [J

Having arrived at the end of this section, we summarize the main re-

sults:

1. Process domains P are obtained as solutions of equations of the form

a. P = {po} u (AxP)

b. P = {po} u PC(AXP), where Pc(-) stands for all closed subsets of (-)
c. P = {po} U (A+PC(BXP)) (idem)

d. P = {po} u (a=P_((BxP) u (C-P))) (idem)

2. Processes p are either nil (po), or finite and of finite degree deg(p),
or infinite and (topological) limit of a sequence <p(1)>l @

(1)

. with p :

finite. (For the definitions of the p see point 5 below.)

3. Operations upon processes are composition ("o"), union ("u") and merge
("]| ™). They are defined as follows (u,|| only for process domains solving

b,c,d above; X,Y are always finite elements of Pc(~)):

60

3.1. peq is defined by induction on deg(q):
P°py = P» PoX = {pex|x € X}, pe<a,q> = <a,p°g>, pera.X = Aa.(peX),

1 (1) (i))
pe<b,q> = <b,peq>, poic.q = Ac.peqg, p° 1mi q

= 11mi (peq
3.2. p u q is defined by
PUPy=pyup=p, XU Y is the set-theoretic union of X and Y,

i i . k k
(Aa.X) u (Aa.X) ra. (XuY), (limi‘p(l)) U (limj q(J)) = 11mk (p()Uq())

1]

3.3. p|| ¢ is defined by induction on deg(p) + deg(q):
pllog = ppll o = ps X[l ¥ = txll Y| x e X} v X[yl y <
(a.X) || (a.Y) = ra. (x| 2a.¥| x € X} v {xa.X||y|l y e YD,
<a,p>|| Y = <a,p|| ¥>, Y|l <a,p> = <a,¥[p>,
‘b,IP” (Aa.Y) = <b,p|| Aa.Y>, and similarly for (Aa.Y) H <b,p>
(Ac.q) ” (Aa.Y) =)\c.(q|| (Aa.Y)), and similarly for (ra.Y) “ (Ae.q),
(Lim; N (Linm, P - lim @™ | ¢®).

4. The above operations are continuous and satisfy the usual properties
such as commutativity (u,|), associativity (e,u,||), etc.

5. With respect to each of the equations a to d, pén)

=p., 0 =0,1,...,
0
0
p()

and, for p # Py> =Pp-
Moreover, for n = 0,1,...,

(For a) p(n+1) = <a,q(n)>, where p = <a,q>
(For b) p(n+l) = {<a,q(n)>| <a,q> € p!}

(For ¢) p(nﬂ) =)\a.{<b,q(n)>| <b,q> € p(a)}
(For d) p(n+1) = Aa.({<b,q(n)>l <b,q> € p(a)} u

{xc.q(n)l rc.q e p(@d).
3. FLOW OF CONTROL: MERGE WITH ITERATION OR RECURSION

In this section we introduce the first two of the series of languages
studied in sections 3-8. Both languages have elementary actions, sequential
composition, nondeterministic choice and (arbitrary, i.e. not synchronized)
merge. Language LO has moreover iteration (f), and language L] has recursion.
We shall use A, with typical elements a, for the class of elementary (atomic)
actions. In later refinements of the theory, actions a will be replaced by
assignment statements. Throughout the paper, we use a self-explanatory

variant of BNF for syntactic definitions.

61

DEFINITION 3.1. The language L0 (regular flow of control + merge) with ele-
ments S, is defined by

*
§ 11 = a |skip |S,;S,ls, v s,Is,lls,[s -

For the definition of the semantics of L0 we use a domain of uniform proces-
ses PO. We assume that its constituent set A is a (possibly infinite) al-
phabet such that for each elementary action a € A there is a corresponding

a € A. Let, moreover, € be the empty word (with respect to the alphabet A).

We give

DEFINITION 3.2. The domain PO is given as solution of
PO = {po} u PC((AU{E})XPO).

Remark. Properly speaking, this requires adaptation of the definitions of
section 2 for uniform processes with the convention that a ¢ A u {e}, to-
gether with natural definitions such as: a; = a, if a, and a, are both
€, or denote the same element of A.

We now define the semantics of L0 by providing a mapping M: LO - PO.
Thus, M determines for each language element S a corresponding process p.
(Mappings such as M are often called valuations in denotational semantics.
They serve to associate meaning - mathematical objects - to the syntactic
constructs in a certain class (here LO), and in this way embody the heart

of a denotational semantics definition.)

DEFINITION 3.3. The valuation M: L0 + P is defined by

0
a. M(a) = {<a,p0>}, where a corresponds to a , M(skip) = {<e,p0>}
b. M(S 35,) = M(S,)oM(S)), M(S,uS,) = M(S)) v M(S,), M(51|| $,) = M(sl)i[M(s,)
c. M(8") = limi P;» where (p0 =Py and)

P-

iv1 = (piOM(S)) U {<e,p0>}.

Remarks.

1. Since the elementary actions are left unspecified, there is not much we
can do with them in the semantic definition. Therefore, we simply map
them onto some corresponding elementary process.

2. The simplicity of clause b is a reward of our preparatory work in section

2. Operations upon (uniform) processes "°","U","H " have become available,

62

and they can be used directly to model the corresponding syntactic com-
position rules.
3. In order to understand the definition of S*, recall the equivalence
s¥ = S;S* u skip. Now define a mapping T: PO - PO by putting
T= lp.((pOM(S))U{<€,pO>}). Here {<e,p0>} is the dummy process, i.e.,
the semantic equivalent of the syntactic skip action. It follows from
general properties of the operations "eo","u" (see Appendix B) that the map-
ping T is contracting, viz. that, for all p',p", d(T(p"),T(p")) < 3d(p’',p")
(this uses that M(S) # P for all S). By a classical result in metric topol-
ogy (the Banach fixed point theorem) we may then conclude that the sequence
pO,T(pO),Tz(pO),... is a Cauchy sequence which converges to a limit p‘
satisfying p = T(p). (In fact, this limit is independent of the starting

process pg, and yields the unique fixed point of T.)

Examples
1. M(E4;ig) = M(EQ)°M(31) = {<a2,p0>}°{<al,P0>} = {<al,{<az,P0>}>}-
2. M((a 33 || (ag38))) = {<aps{<a,p> 1o} {<ag, {<a,,p> > = .. =

{<al’{<32’{<a3’{<34’P0>}>}>’ ‘

<a3,{<a2,{<a4,p0>}>,<a4,{<a2,p0>}>}>}>,

<a3,...>}

(Cf. the example after definition 2.14). .
. M(gf) =p = limi p;s where p. . = (pi°{<a,po>}) u {<€apo>}-

Hence, p = {<E,p0>,

<a,{<g,p0>,
<a,{<e,p0>,
<@,...

. k., . .
In a picture, M(a) is described by
a
a , €
a ///\\E
*

We observe that a means executing a zero or more times, including in-
finite repetition of a.

We next turn to the recursive case. We shall employ the notation of

the p-calculus for recursion (see, e.g. [10,32]), For the reader who has

63

not seen this before, the following explanation may help: Think of a

parameterless recursive procedure Q in some Algol-like language. Q has a
declaration of the form, say, Q « ...Q...Q..., where ...Q...Q... is the
procedure body with two recursive calls of Q. We note that the procedure
variable Q is bound in this declaration (systematically renaming it would
make no difference). A call of Q in the main program corresponds in the no-
tation of the u-calculus to the statement p&l...£...E...7], where the bound
variable £ is from some alphabet of procedure variables X. In this way,

procedure declarations disappear, and inmner calls are taken care of by the

bound variable mechanism.

DEFINITION 3.4. Let X, with elements &, be the set of procedure variables.
The language L1 (general recursion with merge) is defined by: Let S ¢ Ll.
Then

S ::= a | skip | 8,38, | S, v s, I 5, I s, | £ | uelsl.

For the semantics of L1 we take process domain P, equal to P,. In order

1 0°
to handle the variables £, we introduce an environment E, with elements n,
defined by E = X » Pl’ and we define the meaning of a statement S ¢ L] with
respect to E. In other words, we take M: L1 - (E+P]); its definition is

given in
DEFINITION 3.5.
a. M(a)(n) = {<a,p0>}, M(skip) (n) = {<e,py*}
b. M(8,38,) (n) = M(S,) (n)eM(5) (n)
M(Slusz)(n) = M(Sl)(n) U M(Sz)(”)
M(s, Il s) () = M(s) (n) || M(s,) (n)
c. M(&) (M) = n(&)
M(uglsD) (n) = lim, p;» where (p0 = py and)
Py = (<e,M(8) (nlp, /ED)>}.

Remarks.

1. Clauses a and b are exactly as in definition 3.3, apart from the extra
argument n which is just carried along.

2. In the definition of the meaning of the p-construct we observe a compli-
cation. The reader who is familiar with the treatment of (sequential)
recursive procedures in denotational semantics would probably have ex—

pected the definition Piyp = M(S)(n{pi/i}). (Note that this specializes

64

to the previous treatment of iteration by taking s* = uglss;g u skipl.)
This may work as well, but we have not been able to prove that, defining
the mapping T' = Ap.M(S)(n{p/g}), the sequence <T'1(p0)‘>i is a CS for
arbitrary S e Ll’ (Bergstra & Klop [13] prove that <T’l(a:.1)>i is a CS for
each q. However, the resulting limit depends, in general, omn ¢, and the
problem remains which q to choose.) Therefore, we have introduced an
extra step in defining T =)\p.{<e,M(S)(n{p/§%)>}. This indeed ensures
that T is contracting and, as before, 1imi Tl(po) exists and equals the
unique fixed point of T. Operationally, the e-step may be seen as re-
flecting the action of procedure entry. By way of example we obtain that
MGELED) (n) = {<e,{<e,{<e,...>}>}>} (an infinite sequence of empty steps).

C.f. also the discussion in [17].
In definitions 3.3 and 3.5 we have shown how to associate a process p

with statements S ¢ L0 or S ¢ Ll‘ In case one is interested only in the set
of all possible sequences of elementary actions determined by executing S -
rather than in its meaning p = M(S) as a whole; note that a process contains
more information than the set of its constituent paths - we apply a new
(unary) operation upon process p, determining its yZeld p+. For this, we

need the auxiliary definition of path of a process:

DEFINITION 3.6. Let p € PO’ and let a,a; Avu {e}. A path for p is a
(finite or infinite) sequence (%): <al,p1>,<a2,p2>,...,<ai,pi>,... such

that

(1) <3]’Pl> € p and <ai+l’pi+]

(ii) sequence (*) is either infinite or, when finite, terminates with

> € pgs i=1,2,...,

<a_,p > (n21), with P, = Pg-

Remark. Note that, by this definition, P, has no paths. Moreover, note that
we do not allow a finite path terminating in <a ,p > with P, = @ (the emp-

ty set is also a process!)

o df. w o, ® ., o .
Now let A =" A" U A, i.e., A is the set of all finite (possibly

empty) and infinite sequences of elements in A. Also, let "-" denote con—

catenation of words over A. We put

+
DEFINITION 3.7. p < Am is defined to consist of all words w e A” such that
either w = ajrasr.e..ea, where <a1,p1>,